·

「Petrozavodsk Summer 2020」Parity Sort

定义一个排列 $P$ 上的操作 $(t,S)$ 为: 有两个空序列 $A$ 和 $B$ 枚举 $i$ 从 $1$ 到 $n$ 如果 $S_i=0$,不进行操作 如果 $S_i=1$,如果 $P_i$ 是偶数,则放到 $A$ 的末尾,否则放到 $B$ 的末尾 如果 $t=0$,$C=\overline{AB}$;...

·

「集训队作业2020」Old Problem

给一个长度为 $n$ 的序列 $a_i$,和 $q$ 组询问 $(l,r,x)$,表示求 $\displaystyle\prod_{i=l}^r\left(1-\frac{a_i}{x}\right)$ 的值。实数输出,精度要求 $10^{-6}$。 $n,q\le6\times10^5,\ 1\leq a_i < x\leq 10^9$。

·

「集训队作业2020」春天,在积雪下结一成形,抽枝发芽

一个长度为 $n$ 的排列是正确的,当且仅当他不存在非平凡的连续子序列,使得他的值也是连续的。 对于 $k\in[1,n]$ 求出,有多少长度为 $k$ 的正确的排列。 $n\le 10^5$。

·

「校内模拟20200810B」分身

有 $n$ 个人要从 $(0,a_i)$ 走到 $(i,0)$,你需要规划他们的路径使得两两不交。问方案数。 $a_i < a_{i+1},\ n \leq 5 \times 10^5,\ a_i \leq 10^6$。

·

「校内模拟20201118C」张士超你到底把我家钥匙放在哪了?

有 $m$ 个随机数生成器,每一个生成器会在 $[0,a_i] \cap \mathbb N^*$ 中均匀随机得到 $x_i$,再会有 $p_i$ 的概率令 $y_i=1$,否则 $y_i=0$ 。另外会有一个常数 $d$,保证 $d|(a_i+1)$。 考虑 ...

·

「ICPC World Finals 2018」熊猫保护区

给定一个 $n$ 个点的简单多边形(不保证是凸的),你需要确定一个半径 $r$,然后在每个端点画一个半径为 $r$ 的圆,要求能覆盖简单多边形的全部面积。 你需要确定这个 $r$ 最小是多少,精度要求 $10^{-6}$。 ...

·

「CometOJ Round #7 F」最简单的题

维护序列 $a_{1\ldots n}$,支持以下操作 $m$ 次: 给 $x,y$,将 $x$ 位置的值修改为 $y$; 给 $l,r,x$,查询区间$[l,r]$中有多少子区间的最大值小于或等于 $x$。 $n,m \leq 3 \times 10^5$。

·

「UR #8」宿命多项式

给定 $n$ 和 $c_{0\ldots n}$,表示限制形如对于 $0 \leq i \leq n$ 都满足 $1 \leq f(i) \leq c_i$。 其中 $f(x) = \sum_{i=0}^{n} a_i x^i$,其中 $a_{0 \ldots n}$ 都是整数,即 $f(x)$ 是一个不超过 $n$ 次的整系数多项式。 问满足限制的 $f(x)$ 有多少...

·

「CF1264F」Beautiful Fibonacci Problem

对于长度为 $n$ 的递增等差正整数序列 $\{a, a+d, a+2d \ldots a+(n-1)d\}$,我们用三元组 $(a,d,n)$ 表示。 给定递增等差正整数序列 $(a,d,n)$,你需要构造递增等差正整数序列 $(b,e,n)$,满足: ...

·

「CF1292F」Nora's Toy Boxes

一个大小为 $n$ 的集合 $\{a_i\}_{i=1}^n$,每次可以选择 $(i,j,k)$,若 $a_i \mid a_j$ 且 $a_i \mid a_k$,可以将 $a_k$ 删去。 求能删除最多数的删除序列数,删除序列定义为对于一个三元组 $(i,j,k)$,每次删数把 ...

加载更多