一道还是挺有意思的题,讲下某神仙课件里的 Matrix Tree 定理做法。

首先最小生成树有个很显然的性质,就是对于任意两颗同一个图的最小生成树,他们的边权序列排序后应当相同。可以考虑克鲁斯卡尔算法的过程用归纳法证明。

也就是说如果两棵最小生成树不同,一定是克鲁斯卡尔算法加边时,对 同一边权相同数量 条边的选择不同。

容易发现,每次以任意顺序加完所有相同边权的边后,图的连通性相同,而新加的边,一定是将原图的一些不连通的联通块连接起来。考虑暴力做法 2^{10} 枚举,即可有一种朴素的 AC 算法。

然而此题可以跑到 O(n + m k^2) ,可以发现选边的过程类似于生成树计数,我们可以直接用 Matrix Tree 定理求出对于每个连边后联通的联通块的方案树,根据乘法原理相乘即可。

需要注意:

  1. 题目给出的数不是质数(我就因为这个调了很久
  2. 需要把加边前已经联通的联通块缩点

READ MORE

容易发现答案与旗杆的顺序无关,我们可以把旗杆按照从矮到高的顺序排序,这样的话我们只需要维护两个操作:

  1. 插入一些 0
  2. 给一个前缀整体 +1

考虑每次 +1 操作,除了这个前缀中的最大值,每个数的相对位置不会改变。考虑放到线段树上,对于最大值二分出其区间,对其特殊处理后移即可。

READ MORE

现在每天一场模拟赛,考完还有一堆题目要订正。然而晚上回家后上不了学校 OJ ,要知道自己订正的对不对还得第二天跑来学校测 ......

前置条件

  • 一台位于学校的电脑,能保持长时间开机。
  • 一台位于公网的服务器,不需要太高的配置,推荐学生机。

这篇教程将会教你

  • 如何利用 SSH 建立反向连接
  • 如何利用 nginx 实现端口转发并配置
  • 如何利用 nginx 实现屏蔽特定页面的效果
  • 一些操作来保证安全性

READ MORE

本题中我们可以对机器人进行四种操作:

  • U ,即向量 (0, 1)
  • D ,即向量 (0, -1)
  • L ,即向量 (1, 0)
  • R ,即向量 (0, -1)

考虑正解,容易发现我们需要分开考虑 xy 轴的变化,然而上述四种操作对 xy 轴而言有 1 / 0 / -1 三种情况,较难考虑,且一边为 1-1 时,另一边只能为 0 ,较难判断。

于是有一个经典的 trick 就是旋转坐标轴。

考虑以 (\frac {\sqrt 2} 2 , \frac {\sqrt 2} 2)(-\frac {\sqrt 2} 2, \frac {\sqrt 2} 2) 为基底,考虑原来的四种操作:

  • U 变为向量 (1, 1)
  • D 变为向量 (-1, -1)
  • L 变为向量 (-1, 1)
  • R 变为向量 (1, -1)

那么就可以分开考虑 xy 轴的 \pm 1 变化。

假设最后所有向量的和为 \vec{S} ,则题目给出的坐标在时间模 L 后即可转换为一个关于 \vec S 的一次函数。列出不等式并判断下奇偶性即可。

READ MORE